首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70562篇
  免费   12559篇
  国内免费   7203篇
化学   49036篇
晶体学   626篇
力学   4650篇
综合类   311篇
数学   8173篇
物理学   27528篇
  2024年   76篇
  2023年   1537篇
  2022年   1589篇
  2021年   2346篇
  2020年   3067篇
  2019年   2845篇
  2018年   2474篇
  2017年   2265篇
  2016年   3459篇
  2015年   3311篇
  2014年   3959篇
  2013年   5146篇
  2012年   6587篇
  2011年   6733篇
  2010年   4476篇
  2009年   4262篇
  2008年   4596篇
  2007年   4115篇
  2006年   3761篇
  2005年   3136篇
  2004年   2423篇
  2003年   1889篇
  2002年   1654篇
  2001年   1412篇
  2000年   1296篇
  1999年   1484篇
  1998年   1281篇
  1997年   1258篇
  1996年   1258篇
  1995年   1037篇
  1994年   919篇
  1993年   761篇
  1992年   671篇
  1991年   580篇
  1990年   502篇
  1989年   381篇
  1988年   332篇
  1987年   271篇
  1986年   250篇
  1985年   204篇
  1984年   143篇
  1983年   102篇
  1982年   79篇
  1981年   67篇
  1980年   65篇
  1979年   32篇
  1978年   30篇
  1977年   40篇
  1976年   30篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 333 毫秒
991.
Benzothiadiazole(BT) is an electron-deficient unit with fused aromatic core, which can be used to construct conjugated polymers for application in organic solar cells(OSCs). In the past twenty years, huge numbers of conjugated polymers based on BT unit have been developed,focusing on the backbone engineering(such as by using different copolymerized building blocks), side chain engineering(such as by using linear or branch side units), using heteroatoms(such as F, O and S atoms, and CN group), etc. These modifications enable BT-polymers to exhibit distinct absorption spectra(with onset varied from 600 nm to 1000 nm), different frontier energy levels and crystallinities. As a consequence, BT-polymers have gained much attention in recent years, and can be simultaneously used as electron donor and electron acceptor in OSCs, providing the power conversion efficiencies(PCEs) over 18% and 14% in non-fullerene and all-polymer OSCs. In this article, we provide an overview of BTpolymers for OSCs, from donor to acceptor, via selecting some typical BT-polymers in different periods. We hope that the summary in this article can invoke the interest to study the BT-polymers toward high performance OSCs, especially with thick active layers that can be potentially used in large-area devices.  相似文献   
992.
The abuse of antibiotics will cause an increase of drug-resistant strains and environmental pollution,which in turn will affect human health.Therefore,it is important to develop effective detection techniques to determine the level of antibiotics contamination in various fields.Compared with traditional detection methods,electrochemical sensors have received extensive attention due to their advantages such as high sensitivity,low detection limit,and good selectivity.In this mini review,we summarized the latest developments and new trends in electrochemical sensors for antibiotics.Here,modification methods and materials of electrode are discussed.We also pay more attention to the practical applications of antibiotics electrochemical sensors in different fields.In addition,the existing problems and the future challenges ahead have been proposed.We hope that this review can provide new ideas for the development of electrochemical sensors for antibiotics in the future.  相似文献   
993.
Flexible Na-ion storage cathodes are still very few due to the challenge in achieving both reliable mechanical flexibility and excellent electrochemical performances.Herein,a new type of flexible Na_3(VOPO_4)_2F cathode with nanocubes tightly assembled on carbon cloth is fabricated by a facile solvothe rmal method for the first time.The cathode is able to exhibit superior rate capability and stable cycling performa nce up to 1000 cycles,due to the surface-assembling of crystalline nanocubes on carbon fibers.In addition,it shows good mechanical flexibility,nearly no capacity decay is observed after continuous bending of 500 times.With this novel cathode and a directly-grown Na_2Ti_2O_5 anode,a fully binde r-free Na-ion battery is assembled.It can deliver a high wo rking voltage and increased gravimetric energy/power densities(maximum values:220.2 Wh/kg;5674,7 W/kg),and can power a LED indicator at bending angles fro m 0° to 180°.  相似文献   
994.
The effect of gold nanoparticle-decorated molybdenum sulfide (AuNP-MoS2) nanocomposites on amyloid-β-40 (Aβ40) aggregation was investigated. The interesting discovery was that the effect of AuNP-MoS2 nanocomposites on Aβ40 aggregation was contradictory. Low concentration of AuNP-MoS2 nanocomposites could enhance the nucleus formation of Aβ40 peptides and accelerate Aβ40 fibrils aggregation. However, although high concentration of AuNP-MoS2 nanocomposites could enhance the nucleus formation of Aβ40 peptides, it eventually inhibited Aβ40 aggregation process. It might be attributed to the interaction between AuNP-MoS2 nanocomposites and Aβ40 peptides. For low concentration of AuNP-MoS2 nanocomposites, it was acted as nuclei, resulting in the acceleration of the nucleation process. However, the structural flexibility of Aβ40 peptides was limited as the concentration of AuNP-MoS2 nanocomposites was increased, resulting in the inhibition of Aβ40 aggregation. These findings suggested that AuNP-MoS2 nanocomposites might have a great potential to design new multifunctional material for future treatment of amyloid-related diseases.  相似文献   
995.
The intrinsic liquid interface of Na-K alloy allays concerns about dendrite growth on metal anodes that are thermodynamically within the room temperature(20-22℃).Nevertheless,it hinders the formation of a stable electrode structure due to the inferior wettability induced by considerable liquid tension.In addition,the dominant ionic carrier in the Na-K alloy is subject to multiple factors,which is not conducive to customized battery design.This review,based on recently reported frontier achievements on Na-K liquid anodes,summarizes practical strategies for promoting the wettability by hightemperature induction,capillary effect,vacuum infiltration,and solid interface protection.Furthermo re,four selection mechanisms of the dominant ionic carrier are presented:(1) ion property dominated,(2)cathode dominated,(3) separator dominated,and(4) solid electrolyte interface dominated.Notably,initial electrolytes in energy storage systems have been unable to play a decisive role in ionic selection.Utilizing a superior wettability strategy and simultaneously identifying the dominant ionic carrier can facilitate the tailored application of dendrite-free Na-K liquid anodes.  相似文献   
996.
Hepatitis C Virus (HCV) is the key cause of chronic and severe liver diseases. The recent direct-acting antiviral agents have shown the clinical success on HCV-related diseases, but the rapid HCV mutations of the virus highlight the sustaining necessity to develop new drugs. p7, the viroporin protein from HCV, has been sought after as a potential anti-HCV drug target. Several classes of compounds, such as amantadine and rimantadine have been testified for p7 inhibition. However, the efficacies of these compounds are not high. Here, we screened some novel p7 inhibitors with amantadine scaffold for the inhibitor development. The dissociation constant (Kd) of 42 ARD-series compounds were determined by nuclear magnetic resonance (NMR) titrations. The efficacies of the two best inhibitors, ARD87 and ARD112, were further confirmed using viral production assay. The binding mode analysis and binding stability for the strongest inhibitor were deciphered by molecular dynamics (MD) simulation. These ARD-series compounds together with 49 previously published compounds were further analyzed by molecular docking. Key pharmacophores were identified among the structure-similar compounds. Our studies suggest that different functional groups are highly correlated with the efficacy for inhibiting p7 of HCV, in which hydrophobic interactions are the dominant forces for the inhibition potency. Our findings provide guiding principles for designing higher affinity inhibitors of p7 as potential anti-HCV drug candidates.  相似文献   
997.
It is challenging work to develop a low-cost, efficient, and environmentally friendly Cr(VI) adsorbent for waste water treatment. In this paper, we used hemicelluloses from chemical fiber factory waste as the raw material, and prepared two kinds of carbon materials by the green hydrothermal method as adsorbent for Cr(VI). The results showed that hemicelluloses hydrothermally treated with citric acid (HTC) presented spherical shapes, and hemicelluloses hydrothermally treated with ammonia solution (HTC-NH2) provided spongy structures. The adsorption capacity of the samples can be obtained by the Langmuir model, and the adsorption kinetics could be described by the pseudo-second-order model at pH 1.0. The maximum adsorption capacity of HTC-NH2 in the Langmuir model is 74.60 mg/g, much higher than that of HTC (61.25 mg/g). The green hydrothermal treatment of biomass with ammonia solution will provide a simple and feasible way to prepare adsorbent for Cr(VI) in waste water treatment.  相似文献   
998.
Biomimetic electrochemical sensors are very promising not only due to their lower expense and longer stability than conventional enzymatic ones, but they also often suffer from simultaneously achieving high sensitivity and good selectivity. Here we present a well-defined Au@Co3O4/CeO2 yolk-shell nanostructure (YSN) that is first synthesized and exploited as highly efficient electrocatalysts for hydrogen peroxide (H2O2) detection. The introduced CeO2 in Co3O4 matrix greatly facilitates the migration of lattice oxygen, which increases the concentration of surface oxygen vacancies (Oa), remarkably enhancing the adsorption ability of H2O2 and promoting the decomposition of H2O2 for faster electron transfer than pristine Au@Co3O4 core-shell nanostructure (CSN). The abundant Oa of Au@Co3O4/CeO2 YSN is confirmed by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The as-prepared biomimetic sensor delivers a wide dynamic range (5.0 nM to 5.4 μM), a low limit of detection (LOD) (2.74 nM), and a high sensitivity (35.67 μA μM−1 cm−2), paving a new way to construct an ultrasensitive and selective enzyme-free biomimetic electrochemical sensor. Furthermore, the sensor is used to real-time monitor H2O2 released from human cervical cancer cells (HeLa) and human umbilical vein endothelial cells (HUVEC), demonstrating its great potential in practical applications.  相似文献   
999.
A cotton yarn biosensor based on electrochemical transistor functionalized with MWCNT and PANI was developed for the detection of urea. The transistors based on PANI/MWCNT/cotton yarns under optimized MWCNT concentration has been obtained, which exhibited high on/off current ratio, fast response time, and good operational stability. A transistor-based urea sensor was prepared from PANI/MWCNT/cotton yarns, which could monitor urea in the 1 nM–1 mM linear range with the correlation coefficient of 0.9716. Furthermore, the sensor showed superior reproducibility and high specificity. The practical applications of the proposed sensor were also confirmed. These results indicate the flexible transistor can be used as an efficient platform for biological detection in body fluids.  相似文献   
1000.
2D metal-organic framework (MOF) has potential applications in electrocatalysis owing to fast mass transfer, charge transfer and large specific surface area. Here, we had prepared three conductive 2D MOF based on Ni, NiCo and Co in a simple and rapid way. The 2D nanostructure of MOF was confirmed by SEM and TEM. The chemical composition was studied by XRD, Raman and XPS spectrum. The electrochemical oxidation and detection was investigated through cyclic voltammetry and current-time method. Their sensing performance for urea was determined by varying oxidation potentials and metal sites. The non-enzymatic Ni-, NiCo- and Co-MOF sensors had good catalytic activity for urea. Compared with NiCo- and Co-MOF, Ni-MOF had a wider linear range (0.5–832.5 μM), high sensitivity (1960 μA mM−1 cm−2), low detection limit (0.471 μM), and fast response time. The sensors had well repeatability, reproducibility, and selectivity to specific interfering species. Furthermore, Ni- and NiCo-MOF modified electrode was also applied to detection of milk samples. The results showed that the recovery was satisfactory, which further confirmed the effectiveness of non-enzyme sensor. In general, the highly-sensitive 2D Ni- and NiCo-MOF modified electrode has great potential as nonenzymatic urea sensors for real samples detection in hydrogen energy, clinical diagnostics, and environmental protection, et al.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号